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Wave evolution on electrified falling films
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The nonlinear stability of falling film flow down an inclined flat plane is investigated
when an electric field acts normal to the plane. A systematic asymptotic expansion
is used to derive a fully nonlinear long-wave model equation for the scaled interface,
where higher-order terms must be retained to make the long-wave approximation
valid for long times. The effect of the electric field is to introduce a non-local term
which comes from the potential region above the liquid film. This term is always
linearly destabilizing and produces growth rates proportional to the cubic power of
the wavenumber – surface tension is included and provides a short wavelength cutoff.
Even in the absence of an electric field, the fully nonlinear equation can produce
singular solutions after a finite time. This difficulty is avoided at smaller amplitudes
where the weakly nonlinear evolution is governed by an extension of the Kuramoto–
Sivashinsky equation. This equation has solutions which exist for all time and allows
for a complete study of the nonlinear behaviour of competing physical mechanisms:
long-wave instability above a critical Reynolds number, short-wave damping due to
surface tension and intermediate growth due to the electric field. Through a combina-
tion of analysis and extensive numerical experiments, we find parameter ranges that
support non-uniform travelling waves, time-periodic travelling waves and complex
nonlinear dynamics including chaotic interfacial oscillations. It is established that a
sufficiently high electric field will drive the system to chaotic oscillations, even when
the Reynolds number is smaller than the critical value below which the non-electrified
problem is linearly stable. A particular case of this is Stokes flow.

1. Introduction
Falling films have received much attention since the pioneering experiments of

Kapitza & Kapitza (1949) (also Binny 1957). Applications can be found in a wide
variety of technological processes including coating and cooling. In cooling applica-
tions, for example, it has been observed that heat or mass transfer can be increased
by an order of magnitude if there are waves present on the liquid film (Dukler 1976;
Yoshimura, Nosoko & Nagata 1996; Bontozoglou 1998; Nagasaki, Akiyama &
Nakagawa 2002; Serifi, Malamataris & Bontozoglou 2004; Sisoev, Matar & Lawrence
2005).

The initial linear stage of the instability was considered by Benjamin (1957) and
Yih (1963) who showed that the flow becomes unstable to long-waves above a critical
Reynolds number which depends on the angle of inclination (for vertical inclinations,
the critical Reynolds number is zero); the waves travel with a speed of twice the
unperturbed flow speed at the interface. Periodic two-dimensional nonlinear waves
emerge whose structure depends on the forcing frequency that produces them (see
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Alekseenko, Nakoryakov & Pokusaev 1985; Liu, Paul & Gollub 1993), and in general
these are susceptible to three-dimensional instabilities and ensuing spatiotemporal
complexity (Joo & Davis 1992; Liu & Gollub 1993; Chang et al. 1994; Johnson
et al. 1999). It is observed that the long-time behaviour of the flow is dominated by
solitary wave pulses and the interactions between them, and hence a fundamental
understanding of their existence and dynamics, in different physical situations is of
importance. Experiments confirming the central role of solitary wave structures have
been carried out by Liu & Gollub (1994), Vlachogiannis & Bontozoglou (2001) and
Argyriadi, Serifi & Bontozoglou (2004).

Direct numerical simulations of the falling-film problem on flat substrates have been
carried out by several investigators including Salamon, Armstrong & Brown (1994),
Malamataris, Vlachogiannis & Bontozoglou (2002), Gao, Morley & Dhir (2003),
Argyriadi et al. (2004), Gu et al. (2004), Kunugi & Kino (2005); calculations and
experiments over wavy walls can be found in Malamataris & Bontozoglou (1999) and
Vlachogiannis & Bontozoglou (2002), respectively. The computations of Malamataris
et al. (2002) evaluate the spatial linear stability stage of the dynamics and consider
in detail the velocity profiles beneath solitary waves with the finding that a strong
non-parabolicity emerges in front of the main humps along with a small region of
backflow. The dynamics is quite delicate and it is useful, therefore, to obtain reduced
systems that can be studied in detail both numerically and analytically.

At Reynolds numbers not too far from critical, then, it is feasible to develop a long-
wave nonlinear theory as in Benney (1966), Gjevik (1970) and Alekseenko et al. (1985),
for example, giving rise to the so-called ‘Benney’ evolution equation. Even though
this equation contains different physical mechanisms and is potentially capable of
describing the nonlinear dynamics, it lacks a global existence theory for its solutions.
Evidence of this can be found in numerical experiments by Pumir, Manneville &
Pomeau (1983), Joo, Davis & Bankhoff (1991) and Rosenau & Oron (1992). On the
other hand, it has been used successfully to describe experimental observations of
three-dimensional fingering instabilities in falling films (see Diez & Kondic 2001, 2002;
Kondic & Diez 2001). Reviews of falling film flows, and in particular their nonlinear
analysis via long-wave models at small and moderately large Reynolds numbers, can
be found in Chang (1994) and Chang & Demekhin (2002).

Weakly nonlinear analysis of the Benney equation leads to the Kuramoto–
Sivashinsky (KS) equation, which deserves a special mention. This equation arises in
a variety of physical problems and is one of the simplest one-dimensional evolution
equations which exhibit complex dynamics. Applications include falling-film flows
(Benney 1966; Sivashinsky & Michelson 1980; Shlang & Sivashinsky 1982; Hooper &
Grimshaw 1985), core–annular flows (Papageorgiou, Maldarelli & Rumschitzki 1990;
Coward, Papageorgiou & Smyrlis 1995) flame-front instabilities and reaction diffusion
combustion dynamics (Sivashinsky 1977, 1983), chemical physics for propagation of
concentration waves (Kuramoto & Tsuzuki 1975, 1976; Kuramoto 1978), and plasma
physics (Cohen et al. 1976). The rescaled KS equation on 2π-periodic intervals contains
a single parameter ν = (π/L)2 (here L is half of the interval on which the equation is
considered) which is inversely proportional to the length of the system. The equation
was extensively studied computationally (Sivashinsky & Michelson 1980; Frisch,
She & Thual 1986; Hyman & Nikolaenko 1986; Hyman, Nikolaenko & Zaleski 1986;
Greene & Kim 1988; Kevrekidis, Nicolaenko & Scovel 1990; Papageorgiou & Smyrlis
1991; Smyrlis & Papageorgiou 1991, 1996) as well as analytically (Il’yashenko 1992;
Collet et al. 1993a , b; Goodman 1994; Jolly, Rosa & Temam 2000). It is established
that the KS equation produces complicated dynamics in both space and time, and
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when the parameter ν is small enough the solutions become chaotic. A computational
verification of a period-doubling route to chaos according to the Feigenbaum scenario
along with calculation of the two universal constants, can be found in Papageorgiou &
Smyrlis (1991) and Smyrlis & Papageorgiou (1991, 1996).

The present work is concerned with wave formation and evolution of falling films
which are additionally driven by an electric field acting normal to the plate. Perhaps
the earliest known electrohydrodynamic experiment was performed by William Gilbert
in the seventeenth century, who observed the formation of a conical structure on a
sessile drop when a charged rod was brought above it – Taylor (1969). Most of the
earlier modelling has used perfectly conducting liquids or perfect dielectrics and a
review is given in Melcher & Taylor (1969). More recent work has introduced the so-
called ‘leaky dielectric’ model to deal with poorly conducting liquids and electrolytes
(see Allan & Mason 1962; Saville 1977; Russel, Saville & Schowalter 1989; Saville
1997). The possibility of controlling the film flow using a vertical electric field has been
suggested by Kim, Bankoff & Miksis (1992, 1994), Bankoff, Miksis & Gwinner (1994),
Bankoff, Griffing & Schluter (2002) and Griffing et al. (2004) in their consideration
of the electrostatic liquid-film radiator. The idea is to use the reduction of pressure
induced by the electric Maxwell stresses at the liquid/air interface, to reduce or stop
leakage of fluid out of punctures in the outer casing of cooling equipment which is
exposed to cosmic particle impacts in space applications. The theoretical study of Kim
et al. (1992) is two-dimensional (so the holes are slits) and considers a perfect dielectric
liquid and a finite-length electrode placed relatively close to the grounded infinite-plane
substrate. An evolution equation is derived which is similar to the Benney equation,
but contains an additional local term due to the electric field (surface tension is not
included); an analogous analysis is performed for higher Reynolds numbers using
the von Kármán–Pohlhausen parabolic profile approximation to obtain closure (see
Chang & Demekhin 2002). Numerical solutions show reasonable agreement with
direct Navier–Stokes simulations and indicate the feasibility of attaining sufficiently
negative pressures in the vicinity of the electrode that can arrest leakage. The linear
stability is also considered for perfectly conducting fluids and it is found that the
presence of a vertical electric field reduces the critical Reynolds number below
which the flow is stable. A comparison between experiment and lubrication theory
(for a finite-length electrode) is made in Griffing et al. (2004) and agreement is
reasonable. A striking experimental demonstration of the instability due to a vertical
field in the absence of a shear flow can be found in Dong, de Almeida & Tsouris
(2001), where the field induces the formation and protrusion of liquid columns of
one liquid into a second immiscible liquid with different electrical properties. Even
though the observed phenomenon is three-dimensional, a fundamental understanding
of two-dimensional nonlinear interfacial electrohydrodynamics is a suitable starting
point and is one of the aims of the present work. The presence of shear (see the
experiments of Bankoff et al. 2002; Griffing et al. 2004) is found to nonlinearly
saturate the interfacial amplitudes and this is also established by our theoretical study
of the modified KS equation. An interesting analogue of shear stabilization is that of
the nonlinear saturation of capillary instability in core–annular flows (see for example
Papageorgiou et al. 1990).

Gonzalez & Castellanos (1996) considered a perfectly conducting liquid film with
the upper electrode placed far from the grounded substrate. A Benney-type equation
is written down which contains a non-local contribution due to the electric field
above the liquid layer and the fact that the second electrode is at infinity. The form
of such non-local terms has been derived formally in related horizontal electric field
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Figure 1. Schematic of the problem.

problems by Tilley, Petropoulos & Papageorgiou (2001), Papageorgiou & Vanden-
Broeck (2004a , b). The weakly nonlinear version of this equation is a KS equation
with an additional linear term due to the electric field, which enhances the instability.
At sufficiently small Reynolds numbers, Gonzalez & Castellanos (1996) identify a
critical electric field strength above which a mode with non-zero wavenumber first
becomes unstable. They in turn use a Ginzburg–Landau weakly nonlinear expansion
to establish a supercritical bifurcation. The behaviour of the flow at arbitrary electric
field values was not studied and is undertaken in a systematic way in the present work.
It is important also to emphasize that if the Reynolds number is sufficiently large
(so that the non-electrified problem is linearly unstable to long-waves), the weakly
nonlinear theory of Gonzalez & Castellanos (1996) is not possible and the problem
must be addressed numerically. Therefore, there is little overlap between the pre-
sent work and that of Gonzalez & Castellanos (1996). We address the modified KS
equation numerically (at Reynolds numbers above and below critical). The dynamics
is quite different depending on the Reynolds number, but in all cases the system
evolves to mostly chaotic dynamics as the length of the system is increased.

The structure of the paper is as follows. Section 2 formulates the mathematical
problem and the nonlinear interfacial boundary conditions; in § 3, we develop a formal
asymptotic solution valid for long waves, and point out some associated difficulties
for fully nonlinear waves, and derive the weakly nonlinear modified KS equation. In
§ 4, we present detailed numerical solutions and construct a fairly complete picture of
the competing nonlinear dynamics (for Reynolds numbers above and below critical);
some analytical results are also provided. In § 5, we present our conclusions.

2. Two-dimensional fluid flow down an inclined plane under normal
electric field

2.1. Physical model

The physical model of a two-dimensional flow is depicted in figure 1. A Newtonian
liquid of constant density ρ and viscosity µ, flows under gravity along an infinitely
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long flat plate which is inclined at an angle β to the horizontal. A coordinate system
(x, z) is adopted with x measuring distance down and along the plate and z distance
perpendicular to it (see figure 1). The film thickness is z = h(x, t) and its unperturbed
value is h0. The surface tension coefficient between the liquid and the surrounding
medium is σ and the acceleration due to gravity in denoted by g. The plate is taken
to be an infinite electrode which, without loss of generality, is held at zero voltage
potential, i.e. the electrode is grounded. Far from the plate, the electric field E0 is
uniform and normal to the plate. The surrounding medium is assumed to be a perfect
dielectric with permittivity εa , and the corresponding voltage potential in it is denoted
by V . In this study, the liquid is assumed to be perfectly conducting, implying that the
potential on the deformed liquid interface is zero (the electric field in the liquid is also
zero). Along with the usual viscous stresses at the free surface, the electric field causes
additional Maxwell stresses which can affect flow stability and the ensuing dynamics.
Physically, this occurs by a reduction in pressure just beneath the interface due to the
field and we wish to study systematically this effect on the nonlinear dynamics of the
falling film.

2.2. Governing equations

Let the velocity field in the (x, z) coordinate system be u = (u, v). In what follows,
we denote the liquid layer by Region I and the surrounding medium by Region II.
The governing equations in Region I are the incompressible Navier–Stokes equations:

ut + uux + vuz = −px

ρ
+ ν(uxx + uzz) + g sin β, (2.1)

vt + uvx + vvz = −pz

ρ
+ ν(vxx + vzz) − g cos β, (2.2)

ux + vz = 0. (2.3)

The potential in Region II is determined by electrostatics and the electric field can
be written in terms of the gradient of the potential V as E = −∇V . It follows that V

satisfies the Laplace equation:

Vxx + Vzz = 0. (2.4)

The boundary conditions are those of no slip at the wall, u|z=0 = 0, v|z=0 = 0, and
a uniform field condition at infinity, Vx → 0, Vz → −E0 as z → ∞. At the interface
z = h(x, t) we must satisfy a kinematic condition, the zero (or constant) potential
condition and balance of normal and tangential stresses. The out pointing unit
normal and unit tangent vectors at any point on z = h(x, t) are given by n =
(−hx, 1)/(1 + h2

x)
1/2 and t = (1, hx)/(1 + h2

x)
1/2. The kinematic condition is

v = ht + uhx, (2.5)

and noting that ∇V · t =0 is equivalent to a constant potential on the interface, yields

V = 0 ⇒ Vx + hxVz = 0 on z = h(x, t). (2.6)

The components of the stress tensors in Region I are

T I
ij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.7)
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and in Region II

T II
ij = −patmδij + εa

(
EiEj − 1

2
|E|2δij

)
, (2.8)

where patm is the constant atmospheric pressure. In this paper, we assume that
i, j = 1, 2, x1 = x, x2 = z, u1 = u, u2 = v, and (E1, E2) are the components of the
electric field. Note that the stresses in Region I do not have an electric part owing to
the absence of a field, while those in Region II do not have a viscous part since the
outer phase is assumed to be hydrodynamically passive. In general, both viscous and
electrical stresses are present (for perfect dielectrics see Savettaseranee et al. 2003,
for example). The tangential and normal stress balances at the interface take the
form

[t · T · n]III = 0, (2.9)

[n · T · n]III = σκ, (2.10)

where κ = hxx/(1+h2
x)

3/2 is the curvature of the interface. The Maxwell stresses do not
contribute to the tangential stress balance unless there is a finite conductivity in either
of the two phases, as in the leaky dielectric model (see for example Papageorgiou
& Petropoulos 2004). This can be verified directly for the present problem by using
condition (2.6) in (2.9); if, in addition, we use ux = −vz from the continuity equation,
the boundary condition (2.9) becomes(

1 − h2
x

)
(uz + vx) + 4hxvz = 0 on z = h(x, t). (2.11)

Using a similar procedure and the identity uz + vx = −4hxvz/(1 − h2
x), which follows,

from (2.11), yields the following normal stress boundary condition

patm − p − 1
2
εa

(
1 + h2

x

)
V 2

z + 2µ
1 + h2

x

1 − h2
x

vz =
σhxx(

1 + h2
x

)3/2
on z = h(x, t). (2.12)

This completes the statement of the problem which, when supplemented with initial
conditions, constitutes a formidable nonlinear free-boundary problem. We will proceed
asymptotically and seek nonlinear evolution equations valid for long-waves. Before
doing this it is useful to identify an exact (albeit unstable) solution and an appropriate
non-dimensionalization.

An exact solution exists which has h(x, t) = h0 with h0 being a positive constant.
This is analogous to the Nusselt solution for the non-electric case (see Nusselt 1916;
Benjamin 1957) and is given by

ū =
g sin β

2ν
(2h0z − z2), (2.13)

v̄ = 0, (2.14)

p̄ = patm − 1
2
εaE

2
0 − ρg(z − h0) cos β, (2.15)

V = E0(h0 − z). (2.16)

We see that the steady velocity profile is parabolic in z, while the electric potential
varies linearly with z.

2.3. Dimensionless equations

To non-dimensionalize the equations, distances are scaled by the unperturbed depth
h0, velocities by the base velocity at the interface u0|z=h0

≡ U0 = gh2
0 sin β/2ν, the time

scale is chosen to be h0/U0 = 2ν/gh0 sin β , pressure is scaled by ρU 2
0 , and the unit for
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the voltage potential is taken from the change in the basic potential, which is E0h0.
Introducing the following non-dimensional variables,

x∗ =
1

h0

x, z∗ =
1

h0

z, t∗ =
U0

h0

t,

u∗ =
1

U0

u, v∗ =
1

U0

v, p∗ =
1

ρU 2
0

p, V ∗ =
1

E0h0

V, h∗ =
1

h0

h,

⎫⎪⎪⎬
⎪⎪⎭ (2.17)

substituting into equations (2.1)–(2.4) and the boundary conditions (2.5), (2.6), (2.11)
and (2.12) and dropping the stars, provides the following non-dimensional equations
and boundary conditions: In Region I, the Navier–Stokes equations become

ut + uux + vuz = −px +
1

R
(uxx + uzz) +

2

R
, (2.18)

vt + uvx + vvz = −pz +
1

R
(vxx + vzz) − 2

R
cot β, (2.19)

ux + vz = 0, (2.20)

and in Region II, we have the Laplace equation for the electric potential:

Vxx + Vzz = 0. (2.21)

No slip holds at the wall, u|z=0 = 0, v|z=0 = 0 and at infinity we have

Vx → 0, Vz → −1 as z → ∞. (2.22)

At the interface z = h(x, t), we have:

V = 0, (2.23)

v = ht + uhx, (2.24)(
1 − h2

x

)
(uz + vx) + 4hxvz = 0, (2.25)

− 1
2
We

(
1 + h2

x

)
V 2

z +
1 + h2

x

1 − h2
x

vz + 1
2
R(p̄atm − p) =

hxx

2C
(
1 + h2

x

)3/2
, (2.26)

where p̄atm = patm/(ρU 2
0 ) is the non-dimensional constant pressure in Region II. The

other dimensionless parameters are a Reynolds number R, a capillary number C

(measuring the ratio of viscous to capillary forces) and an electric Weber number We

(measuring the ratio of electrical to gravitational forces), and are given by

R =
U0h0

ν
=

gh3
0 sin β

2ν2
, C =

U0µ

σ
=

ρgh2
0 sin β

2σ
, We =

εaE
2
0

ρgh0 sin β
. (2.27)

The exact solutions (2.13)–(2.16) are non-dimensionalized analogously, and in what
follows, we write all dependent variables as the undisturbed dimensionless solution
plus an arbitrary disturbance, e.g. we write u = ū(z) + ũ etc. where ū(z) = z(2 − z),
and drop tildes in the field equations and boundary conditions (note that we use bars
to denote corresponding dimensionless base solutions). For brevity, we give only the
transformed boundary conditions at the interface z = h(x, t):

V = h − 1, (2.28)

v = ht + (h(2 − h) + u)hx, (2.29)(
1 − h2

x

)
(2(1 − h) + uz + vx) + 4hxvz = 0, (2.30)

− 1
2
We

[
(1−Vz)

2
(
1+h2

x

)
−1

]
+

1+h2
x

1−h2
x

vz − cotβ(1−h)− 1
2
Rp =

hxx

2C
(
1+h2

x

)3/2
. (2.31)
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Figure 2. Rescaling of x and z in Regions I and II.

3. Derivation of the long-wave evolution equations
Assume that typical interfacial deformation wavelengths λ are long compared to

the undisturbed thickness h0, i.e. δ = h0/λ � 1. This condition can also be formulated
as

∣∣∂h/∂x
∣∣ � 1. Since lengths have been scaled with h0, there is a separation of length

scales in the liquid layer (Region I) and we introduce the following appropriate change
of variables:

x =
1

δ
ξ, z = z, t =

1

δ
τ, v = δw. (3.1)

The boundary conditions at the interface (z = h(ξ, t)) become:

w = hτ + (ū + u)hξ , (3.2)(
1 − δ2h2

ξ

)(dū

dz
+ uz + δ2wξ

)
+ 4δ2hξwz = 0, (3.3)

− 1
2
We

[
(1 − Vz)

2
(
1 + δ2h2

ξ

)
− 1

]
+ δ

1 + δ2h2
ξ

1 − δ2h2
ξ

wz − cotβ(1 − h) − 1
2
Rp

=
δ2hξξ

2C
(
1 + δ2h2

ξ

)3/2
. (3.4)

Boundary condition (3.4) contains a non-local contribution since V satisfies the
Laplace equation in the potential region above the fluid layer (see figure 2). Before
proceeding with an asymptotic solution in Region I, we calculate the non-local
contribution in (3.4) in terms of h(ξ, t). To achieve this, we introduce the following
independent variables in Region II:

x =
1

δ
ξ, z =

1

δ
ζ, t =

1

δ
τ. (3.5)
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The perturbation voltage potential satisfies

Vξξ + Vζζ = 0, (3.6)

Vξ → 0, Vζ → 0 as ζ → ∞. (3.7)

The boundary condition at the interface is

V |ζ=δh = h(ξ, τ ) − 1 ⇒ V |ζ≈0 = h(ξ, τ ) − 1, (3.8)

keeping the leading term in δ.
The solution of (3.6)–(3.8) is given by

Vζ (ξ, 0) = −H[hξ ], (3.9)

and is determined by applying Cauchy’s theorem to the analytic function f (ξ + iζ ) =
Vξ −iVζ , in a rectangular domain whose limiting form is the region ζ � 0, −∞ < ξ < ∞
(for details see Papageorgiou & Vanden-Broeck (2004 b); Gonzalez & Castellanos
(1996) arrive at the same solution invoking the Poisson formulae). Here H is the
Hilbert transform operator defined by:

H[g](ξ ) =
1

π
PV

∫ ∞

−∞

g(ξ ′)

ξ − ξ ′ dξ ′, (3.10)

and it is assumed that for non-periodic domains we have sufficient decay of g at
infinity. PV denotes the principal value of the integral.

With the non-local contribution of the electric field known, and noting that Vz

transforms to δVζ in terms of outer variables, boundary condition (3.4) becomes

−δWeH[hξ ]+ δwz − cotβ(1−h)− 1
2
Rp +O(δ2)=

δ2hξξ

2C
(
1+ δ2h2

ξ

)3/2
(on z=h). (3.11)

In order to retain the effect of surface tension and the electric field in the leading-order
dynamics, we chose

C = δ2C, We =
We

δ
, (3.12)

where C and We are order-one constants, leading to

p|z=h =
2

R

[
−WeH[hξ ] − cot β(1 − h) − 1

2C
hξξ

]
. (3.13)

In Region I, the appropriate asymptotic expansions are

u = u0 + δu1 + δ2u2 + · · · , w = w0 + δw1 + δ2w2 + · · · , (3.14)

p = p0 + δp1 + δ2p2 + · · · , h = H0 + δH1 + δ2H2 + · · · . (3.15)

In what follows, the Reynolds number R is assumed to be of order one (for long-wave
analyses at large R, see Chang & Demekhin (2002) and numerous historical references
therein). At the leading order we find:

u0 = 2(H0 − 1)z, (3.16)

w0 = −z2H0ξ , (3.17)

p0 =
2

R

[
− WeH[H0ξ ] + (H0 − 1) cot β − 1

2C
H0ξξ

]
, (3.18)

H0τ + 2H 2
0 H0ξ = 0. (3.19)
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The last equation represents mass conservation and is also found in the non-electrical
case (Benney 1966; Lin 1974; Nakaya 1975). In general, the solution of this equation
has infinite slope singularities after a finite time and the long-wave asymptotic
expansion breaks down near the singularity; the usual way to proceed is to regularize
the dynamics by incorporating high-order effects. We also note that for the case of
weakly nonlinear evolution considered later, H0 ≡ 1 satisfies (3.19) exactly, and there
is no need of composite solutions that contain both order-one and order-δ terms.
Proceeding to the next order, we find the following equation for H1:

H1τ + H 2
0 H1ξ + 2H0H0ξH1 + u1|z=H0

H0ξ − w1|z=H0
= 0, (3.20)

where

u1|z=H0
= − 1

2
RH 2

0 p0ξ + 5
6
RH 5

0 H0ξ + 2H0H1, (3.21)

w1|z=H0
= 1

3
RH 3

0 p0ξξ + 1
2
RH 2

0 H0ξp0ξ − 71
30

RH 5
0 H0

2
ξ − 8

15
RH 6

0 H0ξξ − H 2
0 H1ξ , (3.22)

p0 =
2

R

[
−WeH[H0ξ ] + (H0 − 1) cot β − 1

2C
H0ξξ

]
. (3.23)

Using these expressions in (3.20) casts the latter into the more compact form:

H1τ +
[
2H 2

0 H1 − 1
3
RH 3

0 p0ξ + 8
15

RH 6
0 H0ξ

]
ξ

= 0. (3.24)

A regularized equation for the new dependent variable H = H0 + δH1 can now be
sought by adding δ times equation (3.20) to equation (3.19). The resulting regularized
equation is given by

Hτ +

[
2
3
H 3 +δ

(
8
15

RH 6 − 2
3
cotβH 3

)
Hξ +

δ

3C
H 3Hξξξ +

2δ

3
WeH

3H[Hξξ ]

]
ξ

= 0, (3.25)

and it has been verified (the calculations are not included here) that it is correct
to O(δ2). This equation was derived by Gonzalez & Castellanos (1996) using an
intuitive approach rather than formal asymptotics. It is an electrostatically modified
version of the nonlinear interfacial models of Lin (1974) and Nakaya (1975) and the
extensive analytical and numerical study of Pumir et al. (1983). The latter study is
particularly interesting because it shows that equation (3.25) with We = 0 supports
solitary as well as heteroclinic travelling waves. In addition, numerical solutions of the
initial-value problem provide strong evidence that solutions for all time may not exist
for all values of the parameters. One such calculation corresponds to our parameters
R = 13, cotβ = 5, C = 1/2000, and is found to blow up in a finite time, τs say; a
self-similar structure is postulated in the form

H ∼ (τs − τ )−1/9G
(
ξ/(τs − τ )1/6

)
,

where G is a scaling function that was not calculated. In addition to the evidence
that global existence of solutions is unlikely, we see from equations (3.19) and (3.24)
that, in general, H0ξ and higher derivatives become infinite in finite time and this also
holds for H1 and its derivatives. In fact if Hξ = H0ξ + δH1ξ , for example, is to remain
bounded (as is the case for most parameter values) then H1 and higher terms become
unbounded in finite time. We have verified that the neglected order-δ2 terms that
lead to (3.25) contain H1 and these will become as large as the retained terms even
when H remains smooth. We must proceed iteratively, then, writing H =

∑n

j=0 δjHj ,
n = 2, 3, . . . , and showing that an evolution equation is obtained which is correct
to O(δn+1), for each n. This calculation has not been carried out for n � 3. In the
light of these difficulties, then, we construct rational asymptotic solutions that do not
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have a δ-dependence. This is achieved by looking for weakly nonlinear corrections
to H0 = 1 which solves (3.19) exactly – see also Sivashinsky & Shlang (1982) for
the related problem of film flow down a vertical column when the column radius is
asymptotically large compared to the film thickness. It is also important to note that
when the plate is horizontal, β = 0, a fully nonlinear long-wave evolution equation
which is independent of δ, appears at leading order (see Oron, Davis & Bankhoff
1997).

3.1. Weakly nonlinear evolution

We seek a consistent asymptotic evolution of long-waves by imposing H0(ξ, τ ) ≡ 1.
We write H = 1 + α(δ)η where α(δ) = o(δ1/2) and η = O(1). Substituting into (3.25)
we obtain, correct to order δ,

ητ + 2ηξ + 4αηηξ − 2D

3
δηξξ +

δ

3C
ηξξξξ +

2We

3
δH[ηξξξ ] = 0, (3.26)

where D = cot β − 4R/5. The advective term 2ηξ is removed by a Galilean
transformation and a canonical equation arises from (3.26) when the following change
of variables is used:

ξ − 2τ =
1

(2C|D|)1/2
x, δτ =

3

4CD2
t, η =

δ

6α
(2C|D|3)1/2u, (3.27)

to obtain

ut + uux ± uxx + uxxxx + γ H[uxxx] = 0. (3.28)

Note that u from now on represents the scaled interfacial amplitude and is unrelated
to previous dependent variables; γ = 2WeC/|D|1/2 is a positive constant and the plus
sign in front of uxx is taken if D is negative while the minus sign is taken if D is
positive. As a weakly nonlinear approximation of (3.25), equation (3.28) is valid for
u = o(δ−1/2). When the electric field is absent, i.e. We = 0, and D < 0, the canonical
equation is the Kuramoto–Sivashinsky (KS) equation (see Pumir et al. 1983 and § 1):

ut + uux + uxx + uxxxx = 0. (3.29)

3.2. Linear stability

Linearizing (3.28) about u = 0 gives ut ±uxx +uxxxx +γ H[uxxx] = 0 which has normal
mode solutions proportional to exp(ikx + st) if the dispersion relation

s(k) = −k4 + γ |k|3 ± k2, (3.30)

is satisfied (here we use the following result, Ĥ[u](k) = −i sign k û(k) where hats
denote a Fourier transform). This dispersion relation was also given by Gonzalez &
Castellanos (1996) in an unscaled form. The case with the positive sign corresponds
to D < 0 (R > Rc = 5 cot β/4) and gives a band of unstable modes for 0 < k <

(γ +
√

γ 2 + 4 )/2. As γ increases, the size of the band and the corresponding maximum
growth rate, increase. Representative results are shown in figure 3.

If D > 0 (R < Rc), we obtain the negative sign in (3.30), and as pointed out in
Gonzalez & Castellanos (1996), there are two sub-cases: (i) γ � 2 where all modes are
stable, i.e. s(k) � 0 for all k, and, (ii) γ > 2 where there appears a band of unstable

waves extending from k = (γ −
√

γ 2 − 4)/2 to k = (γ +
√

γ 2 − 4)/2. Typical results
are shown in figure 3.

In both cases, the electric field is destabilizing. The weakly nonlinear stability in
the vicinity of γ = 2 was carried out by Gonzalez & Castellanos (1996) where a
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Figure 3. Changes in the dispersion relation due to the electric field. (a) corresponds to the
flow above the critical Reynolds number, (b) below the critical Reynolds number.

Ginzburg–Landau equation admitting supercritical states was derived. The present
work has very little overlap with that study since we are interested in the dynamics
well beyond critical in Case II; we also study Case I which is not amenable to a
similar weakly nonlinear theory.

4. Spatio-temporal dynamics: regular and chaotic solutions
Linear theory predicts that sufficiently long-waves are unstable and that the electric

field increases the instability band to include relatively shorter waves. For the KS
equation, it is established (numerically and analytically) that nonlinearity acts to
saturate the instability (negative diffusion and fourth-derivative damping) to produce
a host of rich dynamical behaviour: steady states, Hopf bifurcations to time-periodic
solutions, period doubling cascades to chaos according to the Feigenbaum scenario,
chaotic attractors with coexisting stable multi-modal fixed points, etc. The electric
field enhances the instability and the objective of this section is a systematic mapping
of its effect on the dynamics as compared to those known for the KS equation. Note
also that Case II above, is not the KS equation when γ = 0, and in what follows we
present evidence that chaotic states emerge in this case also if γ is sufficiently large.
This suggests that the electric field can be used to produce interfacial turbulence at
small or zero Reynolds numbers where all disturbances would otherwise be damped.
We are not aware of any controlled experiments that have shown such behaviour,
and the present calculations could be useful in suggesting such studies.

Consider (3.28) on a finite interval [−L, L] with periodic boundary conditions; L

measures the size of the system and controls the number of unstable modes present
(in the context of the KS equation). We can normalize equation (3.28) to 2π-periodic
domains using the rescaling

t̄ = (π/L)2t, x̄ = (π/L)x, ū = (L/π)u, (4.1)

which (on dropping the bars) casts the equation into

ut + uux ± uxx + νuxxxx + µH[u]xxx = 0, (4.2)

where ν = (π/L)2 and µ = (π/L)γ. Periodic initial conditions are also prescribed (see
later).

We used two different numerical methods. The first method implements a linear
propagator so that the linear part of the operator is done exactly in Fourier space
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and the stiffness is removed (see for example Trefethen 2000). For example, if hats
denote Fourier transforms, and Û = e−s(k)t û, the equation becomes

Ût + 1
2
ie−s(k)t kû2 = 0, (4.3)

where s(k) is the spectrum from linear theory (see above). Using a pseudospectral
representation of derivatives, equation (4.3) becomes an ordinary differential equation
(ODE) for Û (for each k), and is solved with a fourth-order Runge–Kutta method.

The second method is a Fourier–Galerkin one. Let ûk(t) be the Fourier coefficients
of u(x, t), i.e.

u(x, t) =

∞∑
k=−∞

ûk(t)e
ikx. (4.4)

Equation (4.2) is equivalent to the following infinite dimensional system of ODEs

dûk(t)

dt
= (−νk4 + µ|k|3 ± k2)ûk(t) − 1

2
ik

∑
k1+k2=k

ûk1
(t)ûk2

(t). (4.5)

These equations were integrated using the Matlab integrator ode23tb for stiff
differential equations with variable step size to ensure stability and accuracy. The
modes ûk are only computed for |k| < Kmax, all other ûk being set to 0, with Kmax

chosen so that the neglected modes have magnitudes less than 10−15. The value of
Kmax depends on µ and ν and, in most of the computations described here, it has a
value of 30 or less.

The initial condition used is

u0(x) =
1

10

10∑
k=1

(αk cos(kx) + βk sin(kx)), (4.6)

where the coefficients αk , βk , k = 1, 2, . . . , 10, are chosen randomly in the interval
[0, 1]. The methods were implemented and tested for a very large number of the
values of the parameters ν and µ. For the first method, for example, the space
discretization ranged from 128 to 512 modes and the time step was taken to be
10−3 or smaller with typical maximum integration times of 100–1000 time units. A
variety of diagnostics is used to determine the form of the solution – these include
the tracking of the maxima and minima of the L2 norm of the solution, return maps
using these, and Fourier transforms of large time series data. Such diagnostics have
been used successfully in the past for different problems (see Smyrlis & Papageorgiou
1991, 1996; Hall & Papageorgiou 1999; Blyth, Hall & Papageorgiou 2003). Typically,
for each set of parameters, we track the time evolution of the profile, its energy
(L2-norm) and its Fourier modes. The evolution of the energy was used to classify
various attractors. For example, for steady or steady-state travelling waves, the energy
reaches a constant value at large times, and for periodic attractors, the energy is a
periodic function of time. For chaotic solutions, the energy becomes highly oscillatory
and information is extracted by numerically constructing return maps and studying
their geometry – e.g. self-similar folding behaviour is strong evidence of a chaotic
attractor – see references above.

4.1. Numerical results, Case I: modified Kuramoto–Sivashinsky equation

All our numerical results indicate that the solutions remain bounded as t becomes
large. A proof of such a result is available for the KS equation (see § 1) and this
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Figure 4. Schematic of the various attractors. A, solution decays to zero; B, unimodal steady
state; C, unimodal steady-state travelling wave; D, periodic hormoclinic bursts; E, bimodal
steady state; F, complicated dynamics including windows of time periodic attractors with period
doubling, multimodal steady-state attractors, homoclinic bursts, and chaotic oscillations.

has been extended to the modified KS equation (Duan & Ervin 1998; Tseluiko &
Papageorgiou 2006). In what follows we provide a quantitative description of the
different attractors as ν and µ vary (decreasing ν corresponds to an increased
length of the system and increasing µ corresponds to an increased applied voltage
difference).

It was also observed numerically that as the coefficient µ of the integral term goes
to zero, the solutions of the modified KS equation converge in L2 to the corresponding
solutions of the usual KS equation. At µ = 0, we recover the results obtained for the
usual KS equation; this also confirms the accuracy of the numerical simulations.

In figure 4, we depict a summary of the results for different values of µ as ν

decreases. The two-parameter phase space is quite large and we confine our results
to an overall description of the dynamical features rather than a detailed study of
individual attractors. The letters A–F are used to identify windows of the parameter ν

for various attractors for fixed but moderate values of µ. As µ increases, the qualitative
dynamics remains the same, but the windows A–F widen in ν. The boundaries in the
(ν, µ)-plane that separate the attractors A–F are shown in figure 5, from which it is
seen that all follow linear laws with slopes larger than or equal to one. The right-most
boundary separating attractors A and B has been established analytically, but we do
not have an explanation for the linear behaviour of the other boundaries at present.
We note that the lines ‘fan’ out and do not cross. A brief description of the different
attractors along with sample numerical results is given next.

In the attractor labelled A, the solutions decay to zero as time increases and
a trivial steady state is achieved (note that the initial condition has zero spatial
mean). This result can be proved analytically for any µ, using the Poincaré
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Figure 5. The boundaries between attractors in the (ν, µ)-plane. Case I.

inequality (see Temam 1988): ∫ π

−π

g2 dx �

∫ π

−π

g2
x dx, (4.7)

for periodic functions of period 2π. In fact, we can prove the following. If ν > 1 + µ

then the solutions of (4.2) converge to zero (in L2
per) as t goes to infinity. (Here L2

per is

the subspace of L2(−π, π) consisting of periodic functions with period 2π.) To prove
this, we multiply equation (4.2) by u, integrate from −π to π with respect to x and
use periodicity to obtain

1

2

d

dt

∫ π

−π

u2 dx =

∫ π

−π

u2
x dx − ν

∫ π

−π

u2
xx dx + µ

∫ π

−π

uxH[u]xx dx. (4.8)

Using the Cauchy–Schwartz inequality and the the fact that the Hilbert transform
commutes with derivatives, and its L2 norm is equal to the L2 norm of the function
on which it operates, we can estimate∫ π

−π

uxH[u]xx dx �
1

2

∫ π

−π

u2
x dx +

1

2

∫ π

−π

H[u]2xx dx

=
1

2

∫ π

−π

u2
x dx +

1

2

∫ π

−π

H[uxx]
2 dx,

=
1

2

∫ π

−π

u2
x dx +

1

2

∫ π

−π

u2
xx dx. (4.9)

Using this in (4.8) along with inequality (4.7) for g = ux , gives

1

2

d

dt

∫ π

−π

u2 dx � (1 + µ − ν)

∫ π

−π

u2
xx dx. (4.10)

The Poincaré inequality (4.7) also implies∫ π

−π

u2
xx dx �

∫ π

−π

u2 dx. (4.11)
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Figure 7. Window B. Unimodal steady state for µ = 0.5, ν = 0.7. (a) The evolution of the
profile; (b) the evolution of the energy.

Hence, for ν > 1 + µ we have

1

2

d

dt

∫ π

−π

u2 dx � (1 + µ − ν)

∫ π

−π

u2 dx. (4.12)

Therefore there exists a non-negative constant C such that∫ π

−π

u2 dx � Ce2(1+µ−ν)t . (4.13)

This implies that ‖u‖2 → 0 as t → ∞, as required. This fact is fully reflected in the
results of figure 4 and hence serves as an additional check on the numerical work.
A sample run which quantifies the rate of decay, is given in figure 6 for µ = 0.5,
ν = 1.6; it is verified numerically, therefore, that the decay is exponential with a rate
given by the estimate (4.13).

For ν < 1 + µ, the trivial solution bifurcates to provide a branch of unimodal (2π-
periodic) steady states – window B in figure 4. These are globally attracting and are
stable (the latter observation is based on our time-dependent numerical procedure).
Figure 7 depicts the evolution of the profile and the corresponding energy for ν = 0.7,
µ = 0.5. The solution reaches its steady state in about 10 time units and the long
integration to 150 time units provides strong evidence of stability. The size of the
windows of attractor B increase as µ increases, but at the same time, the lower
boundary of attractor B shifts to larger values of ν. For example, when µ = 0, the
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Figure 8. Window C. Unimodal steady-state travelling wave for µ = 0.5, ν = 0.5. (a) The
evolution of the profile; (b) the evolution of the energy.
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Figure 9. Window D. Periodic homoclinic bursts for µ = 0.5, ν = 0.45. (a) The evolution of
the profile; (b) the evolution of the energy.

lower boundary of B is at ν ≈ 0.31 while for µ = 0.5 the corresponding value is
ν ≈ 0.5. This behaviour persists for higher values of µ and for different attractors as
is seen in figure 4. Physically, the implication is that as the voltage potential difference
is increased, more complicated dynamics emerge as compared to the KS equation.

As ν decreases further, solutions in attractor B lose stability through a Hopf
bifurcation to travelling-wave states. These nonlinear travelling waves are unimodal
(i.e. they have spatial periods of 2π). For fixed µ, the speed of the travelling waves
increases monotonically as ν is decreased. Typical results from this window are shown
in figure 8 for µ = 0.5, ν = 0.5. It is observed from the evolution of the energy that the
initial transient stages of the solution are oscillatory in time, indicating the presence
of a time-periodic attractor in the vicinity of these values of the parameters. These
transient oscillations become longer lived as ν is decreased (for all µ discussed here),
and indeed another Hopf bifurcation takes place, this time producing temporally
homoclinic bursts. It is found that the solution between bursts is a bimodal fixed
point (i.e. the shortest spatial period is π – alternatively, all the energy is carried by the
even Fourier modes). The bursts are identical (this has been checked by studying the
phase plane of the energy, for example), but the time between bursts is not constant
and so the solution is not strictly time periodic – this is also true for the KS equation
(Smyrlis & Papageorgiou 1996). The minimum time between bursts (after transients
disappear) increases as ν is decreased for a fixed value of µ. Typical results are shown
in figure 9 which depicts the profile evolution and the corresponding energy evolution
for µ = 0.5, ν = 0.45.
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Figure 10. Window E. Bimodal steady state for µ = 0.5, ν = 0.35. (a) The evolution of the
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Figure 11. Window F. Time periodic attractor for µ = 0.5, ν = 0.298. (a) The evolution of
the profile; (b) the evolution of the energy.

Further decrease of ν leads to a new bimodal fixed-point attractor denoted by E in
figure 4. This attractor emerges from attractor D as the period of oscillation of the
homoclinic bursts becomes increasingly larger. We have checked the stability of these
fixed-point solutions by integrating to very large times. Typical results are depicted
in figure 10 for µ = 0.5, ν = 0.35.

In the initial stages of window F, the bimodal steady states lose stability and a
Hopf bifurcation to time periodic solutions takes place. As ν decreases, the period
increases monotonically until a period doubling takes place. Sample results are given
in figure 11 which depicts the profile evolution and the corresponding energy evolution
for µ = 0.5 and ν = 0.298. The period has undergone several period doublings and its
current value is approximately 0.8. This pattern of subharmonic bifurcations follows
the Feigenbaum scenario in much the same way as for the non-electric case (see,
for example, Papageorgiou & Smyrlis 1991; Smyrlis & Papageorgiou 1991, 1996).
We have not carried out an exhaustive study to estimate the Feigenbaum universal
constants as was done in the papers above, but have confirmed the trend and the
geometric contraction of time-periodic windows of increasingly larger periods. Just
beyond the accumulation point (in ν for fixed µ), the solutions become attracted to
chaotic homoclinic bursts which are spaced apart at roughly equal time intervals, the
profile between bursts being bimodal. Representative solutions are given in figure 12
for µ = 0.5 and ν = 0.29. In this case the time between chaotic bursts is approximately
44 time units. As ν decreases further, the dynamics becomes more complicated and
we have computed solutions in small windows supporting multimodal fixed points,
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Figure 12. Window F. Chaotic homoclinic bursts for µ = 0.5, ν = 0.29. (a) The evolution of
the profile; (b) the evolution of the energy.
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Figure 13. Window F. Multimodal steady attractor for µ = 0.5, ν = 0.1. (a) The evolution
of the profile; (b) the evolution of the energy.

for example. The strongest attractors appear to be chaotic, however, in line with
the dynamics of the KS equation. Such features are illustrated in figure 13 which
contains computations for µ = 0.5 and ν = 0.1 (the value of ν is substantially below
the accumulation point that heralds the beginning of the first chaotic attractor). The
solution is a pentamodal fixed-point (the spatial period is 2π/5 and only the Fourier
modes which are multiples of 5 appear in the spectrum) and the trough to crest
distance is relatively large, approximately equal to 95 units. Such waves have been
observed in KS calculations also (see Frisch et al. 1986; Smyrlis & Papageorgiou
1996). We note also that the transient to the steady state is about 20 time units and
appears to be chaotic, but fixed-point solutions are more attracting in this particular
region of the phase space (this statement is based on the fact that our initial conditions
are chosen randomly). Finally, in figure 14 we reduce the value of ν to 0.05 and the
emerging solution is chaotic for the duration of the run which is 100 time units.

4.2. Numerical results, Case II: damped modified Kuramoto–Sivashinsky equation

In this case, the minus sign is picked in the canonical equation (4.2) and if µ � 2
√

ν, the
growth rate is non-positive and all waves are stable. A necessary condition for
instability is µ2 > 4ν in which case all waves in the interval (k−, k+) are unstable where

k± =
µ ±

√
µ2 − 4ν

2ν
. (4.14)
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Clearly, if µ is fixed and ν is sufficiently large, all modes are stable. In fact, modifying
the analysis of § 4.1, we can prove that ‖u‖2 → 0 as t → ∞ as long as

ν > µ − 1. (4.15)

The main difference is the minus sign in the first term on the right-hand side of (4.8)
and the expression of the bound in terms of ‖ux‖2 first rather than ‖uxx‖2. It has
been established numerically that the bound (4.15) is sharp as long as µ > 2, that is,
trivial solutions are guaranteed at large times in this case. When µ < 2, the analysis
is modified by introducing the Poincaré inequality for multimodal solutions. This is
guided by numerical solutions as well as linear theory for the finite periodic domains
of interest here, as we describe next.

Consider the countably infinite set of points (µ, ν) where the modes k = 1, 2, . . .

first become unstable (note that we are restricted to integer k owing to the particular
choice of periodic boundary conditions). These must lie on the curve µ = 2

√
ν (see

above), and must satisfy

k− = k+ = m, m = 1, 2, . . . . (4.16)

Solving, we obtain

ν =
1

m2
, µ =

2

m
, m = 1, 2, . . . , (4.17)

which shows that if we fix µ = 2/m and increase ν above 1/m2, a trivial solution
emerges at large times. To obtain a sharp stability boundary we must consider values
of ν and µ away from these neutral points. For example, if k = m is to be unstable,
then we require it to be contained in the interval (k−, k+), that is

k− < m, k+ > m ⇒ µ > mν +
1

m
. (4.18)

The boundary of these regions is seen to be the tangent curve to µ = 2
√

ν at each
of the neutral monochromatic modes (4.17) for each m = 1, 2, . . . . The stability
boundary is therefore a polygonal curve made up of the segments µ = mν + 1/m

so that the curve with the smallest µ is kept. The points of intersection of two such
curves at successive values m and m + 1, say, indicate points (ν, µ) where the modes
k = m and k = m + 1 are neutral simultaneously. These intersections are given by

µ =
2m + 1

m(m + 1)
, ν =

1

m(m + 1)
, m = 1, 2, . . . . (4.19)
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Figure 15. The first bifurcation boundary in the (ν, µ)-plane. The first three segments of the
boundary are shown. Circles (from top to bottom) denote points where the modes k = 1, 2, 3
are neutral, respectively. Squares (from top to bottom) are points where the modes k = 1, 2,
k = 2, 3 and k = 4, 5 are neutral.

Note also that the m = 1 line becomes the sharp first bifurcation boundary µ = ν +1
that holds for µ > 2 analysed earlier. In figure 15, we show the first three segments
of this boundary – higher elements become increasingly difficult to distinguish from
the parabolic curve owing to the geometric clustering of the higher neutral points as
m increases.

Bifurcations in the neighbourhood of the circles produce m-modal non-uniform
steady states of period 2π/m as m increases (that is as µ, ν → 0). For large ν

trivial solutions emerge when (4.15) is satisfied. In general, the bifurcated solutions
near this curve are unimodal steady states since the k = 1 mode becomes active
first. The bifurcation near the points (4.19) marked by squares in figure 15 produces
unimodal behaviour owing to the nonlinear interaction of modes which differ by
unit wavenumber. These stability results provide some explanations for the results of
numerical experiments described next.

We have carried out extensive numerical experiments and the results are collected
in figure 16. As described above, the limit µ, ν → 0 deserves separate attention since
we expect a host of interesting dynamical behaviour such as multimodal attractors
and resonant wave interactions. We do not pursue this limit further in the present
work, but note the run having µ = 1 in figure 16. This run is chosen to correspond
with the dynamics originating from the bifurcation point denoted by an open circle
at (1/4, 1) in figure 15. The run fixes µ = 1 and decreases ν below 0.25. As discussed
above, a bimodal steady state is expected since a wave with k = 2 is marginally stable
at (1/4, 1). The numerical results show that a supercritical bifurcation takes place
and a bimodal steady state is supported in the region 0.227 � ν < 0.25, indicated by
the letter E. Just below ν = 0.227, the dynamics become complicated with chaotic
solutions emerging as labelled by the attractor F. Two other values, µ = 0.8 and 1.4
fall within this ‘small’ µ, ν region. For µ = 0.8, a non-trivial steady state bifurcates
at ν = (0.8 − 1/3)/3 ≈ 0.1556 (this comes from the segment defined by (4.18) for
m = 3 – see also figure 15). The neutral wavenumber has k = 3, but the long-time
dynamics computed here indicate attractor F behaviour. One explanation for this
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Figure 16. Schematic of the attractors for Case II. A, solution decay to zero; B, unimodal
steady state; C, unimodal steady-state travelling wave; D, periodic hormoclinic bursts; E,
bimodal steady state; F, complicated dynamics including windows of time periodic attractors
with period doubling, multimodal steady-state attractors, homoclinic bursts, and chaotic
oscillations.

is that due to the geometric contraction of the segments comprising the polygonal
stability boundary, it is increasingly difficult to find attractors which are supported
on windows of diminishing size. A bifurcation analysis of this limit is the subject of
future work. Similar reasoning can be applied to the other numerical example that has
µ = 1.4. The bifurcation is now through a k = 2 neutral mode and the sequence of
computed windows begins with periodic homoclinic bursts, to bimodal steady states
to dynamics in attractor F.

The other results in figure 15 are at values of µ � 2, and they all have similar
bifurcation paths, namely the sequence of attractors A → B → C → D → E → F,
in much the same way as was discovered for Case I earlier. These cases lie outside
the small µ, ν bifurcation scenario given above and all bifurcations are unimodal
with k = 1 being the neutral mode. In addition, subwindow lengths increase as
µ increases, the behaviour being linear and similar to that depicted in figure 5.
Ultimately, however, our numerical results indicate that for any µ, the dynamics are
attracted to chaotic states if ν is sufficiently small. This happens at small electric fields
also and generic dynamical phenomena are observed.

5. Conclusions
We have derived and used long-wave model equations to study the behaviour

of falling films when a normal electric field is present. Through a combination
of analysis and computations, we have established the spatio-temporal interfacial
dynamics when the amplitudes are small, but a nonlinearity is present. This has been
done by considering solutions of a modified KS equation, the modification being a
non-local term due to the electric field. There are two canonical evolution equations,
one valid for Reynolds numbers above critical, R > 5 cotβ/4, and one below critical;
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both canonical equations depend on two parameters: ν = (π/L)2 > 0 where L is the
length of the system, and µ = 2ν1/2WeC/| cotβ − 4

5
R|1/2 � 0, which is proportional to

the reduced electric Weber number We (this in turn is proportional to the square of
the applied electric field, see (2.27)). In the absence of an electric field, the evolution
equation above critical Reynolds numbers is the KS equation which has a band of
linearly unstable waves for all values of ν < 1. Below critical, however, there are
no linearly unstable waves and instability is possible only if µ is sufficiently large.
We have established numerically, that as long as a uniform constant interface is
linearly unstable, then the large-time dynamics depends on the value of ν: trivial
states emerge if ν > µ + 1 or ν > µ − 1 for flows above/below critical, respectively;
as ν is decreased, different attractors are found supporting non-uniform steady-state
solutions, time-periodic solutions and chaotic solutions if ν is sufficiently small. Our
results predict that interfacial chaos can be achieved at zero Reynolds numbers also,
when fluid inertia is completely absent – the electric field provides the energy input
for this phenomenon.

The work of DTP was supported by the National Science Foundation Grant
number DMS-0072228. DT acknowledges support from NJIT.
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